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A H1-Gated Urea Channel: The
Link Between Helicobacter
pylori Urease and Gastric

Colonization
David L. Weeks, Sepehr Eskandari, David R. Scott, George Sachs*

Acidic media trigger cytoplasmic urease activity of the unique human gastric
pathogen Helicobacter pylori. Deletion of ureI prevents this activation of cy-
toplasmic urease that is essential for bacterial acid resistance. UreI is an inner
membrane protein with six transmembrane segments as shown by in vitro
transcription/translation and membrane separation. Expression of UreI in
Xenopus oocytes results in acid-stimulated urea uptake, with a pH profile
similar to activation of cytoplasmic urease. Mutation of periplasmic histidine
123 abolishes stimulation. UreI-mediated transport is urea specific, passive,
nonsaturable, nonelectrogenic, and temperature independent. UreI functions as
a H1-gated urea channel regulating cytoplasmic urease that is essential for
gastric survival and colonization.

The Gram-negative pathogen H. pylori is
unique in its ability to colonize the human
stomach. H. pylori infection is acquired during
childhood, persists lifelong if not eradicated,
and is associated with chronic gastritis and an
increased risk of peptic ulcer disease and gastric
cancer (1). An acid-tolerant neutralophile, H.
pylori expresses a neutral pH–optimum urease
to maintain proton motive force (PMF) and to
enable gastric colonization (2).

Most urease is found in the bacterial cyto-
plasm, although up to 10% appears on the sur-

face, owing to cell lysis during culture (3). Sur-
face or free urease has a pH optimum between
pH 7.5 and 8.0 but is irreversibly inactivated
below pH 4.0 (4, 5). The activity of cytoplasmic
urease is low at neutral pH but increases 10- to
20-fold as the external pH falls between 6.5 and
5.5, and its activity remains high down to pH
;2.5 (5). Thus, cytoplasmic, not surface, urease
is required for acid resistance. The unmodified
urea permeability of the inner membrane is in-
sufficient to supply enough urea to intrabacterial
urease for urease activity to buffer the bacterial
periplasm in the face of gastric acidity (the
median diurnal acidity of the human stomach is
pH 1.4). The data here show that H. pylori
expresses a urea transport protein with unique
acid-dependent properties that activates the rate
of urea entry into the cytoplasm.
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The permeability of urea across phospholip-
id bilayer membranes, 4 3 1026 cm s21 (6), is
insufficient to saturate internal urease. At neutral
pH, this rate of urea entry is not able to saturate
intrabacterial urease even with 100 mM external
urea. In acidic media, the apparent Michaelis
constant Km of internal urease becomes equal to
that of free urease, ;1 mM (5), demonstrating
an accelerated urea entry. The addition of 0.01%
of the nonionic detergent C12E8 permeabilizes
the inner membrane, as shown by penetration of
propidium iodide, without disrupting its mor-
phology (Fig. 1). The urease of C12E8-treated
intact organisms is fully active at neutral pH
(intact bacteria, 0.25 6 0.1 mmol of urea per
minute per milligram of protein; bacterial ho-
mogenate, 2.76 6 0.27 mmol of urea per minute
per milligram of protein; bacteria with 0.01%
C12E8, 2.65 6 0.10 mmol of urea per minute per
milligram of protein). Thus, an increase of urea
permeability of intact H. pylori accounts for the
activation of cytoplasmic urease in acidic media.

The urease gene cluster consists of seven
genes. ureA and ureB encode the urease struc-
tural subunits, and ureE, -F, -G, and -H encode
accessory proteins necessary for Ni21 insertion
into the apoenzyme (7). ureI encodes a mem-
brane protein with homology to putative amide
transporters such as AmiS, AmiS2, and ORFP3
(8), and its absence impairs acid survival (9).
UreI may be an acid-activated urea transporter
crucial for acid resistance of H. pylori. Its func-
tion was determined in deletion mutants and by
expression in Xenopus oocytes.

In contrast to the large acid-induced in-
crease in urease activity of wild-type organ-
isms, no increase of activity in acidic medium
was observed in the intact ureI mutant (10),
DW504UreI2 (Fig. 2). However, urease activ-
ity of detergent-treated ureI2 cells (3.0 6 0.25
mmol of urea per minute per milligram of pro-
tein) or cell lysate resulted in urease activity
equal to that of wild-type organisms. The nor-
mal level of urease shows that deletion of ureI
did not affect the expression of the downstream
urease accessory genes essential for its biosyn-
thesis. The mutation is therefore nonpolar. Ab-
olition of acid activation of urease in intact
organisms by ureI deletion and full activation
of intrabacterial urease by C12E8 suggest that
UreI-mediated transport of urea determines the

pH dependence of cytoplasmic urease.
Because activity of the H. pylori cytoplasmic

urease maintains an inward urea gradient, up-
take does not need energy from adenosine
triphosphate (ATP) or ion gradients. Measure-
ment of passive urea uptake in prokaryotes, with
their small volume-to-surface ratio, is precluded
by the endogenous permeability of phospholipid
bilayers. Oocytes have a volume-to-surface ratio
several hundred times that of prokaryotes and
express neither endogenous urea transporters
nor urease activity (11). UreI was therefore ex-
pressed in Xenopus oocytes by injection of ureI
complementary RNA (cRNA) (Fig. 3). Over 30
min, urea uptake in UreI oocytes was accelerat-
ed 6- to 10-fold at pH 5.0 compared with pH 7.5
and was the same as in noninjected oocytes at
either pH (12) (Fig. 4, A and C). Control oo-
cytes equilibrated to the same level as oocytes
expressing UreI, but required 48 hours to reach
equilibrium as compared with 1 hour for ureI-
injected oocytes. No increase in internal concen-
tration was found above the increase from
equalization of the concentration gradient. Ac-
cumulation was consistent with acid-dependent
UreI facilitation of urea transport into the 0.4 to
0.6 ml of internal oocyte water space (13).

UreI-dependent urea uptake was activated
with a pH profile nearly identical to the pH
activation profile of cytoplasmic urease in H.
pylori (5). Half-maximal activation of transport
occurred at pH ;6.0 (Fig. 4B). Uptake was
highly selective for urea, with only trace accu-
mulation of 14C-thiourea (Fig. 4C) or 14C-man-
nitol (1.13 6 0.10 and 0.41 6 0.14 pmol per
oocyte at pH 5.0, respectively). Uptake of 50
mM 14C-urea was 15.28 6 0.27 and 13.61 6
0.97 pmol per oocyte in the absence or presence
of 100 mM unlabeled urea, respectively. Thus,
saturation was not seen, even though a 2000-
fold excess of urea was added (Fig. 4C). The
addition of urea to voltage-clamped UreI-ex-
pressing oocytes resulted in no change in
current. An inward current of 117 nA is pre-
dicted, if UreI were a proton- or cation-driven
urea transporter with a stoichiometry of 1:1
(14). UreI-mediated urea uptake is therefore
nonelectrogenic.

Transport at pH 5.0 was temperature in-
dependent between 15° and 30°C (Fig. 4D).
This temperature insensivity and the lack of

saturation of uptake suggest that, after H1

activation, urea fluxes through UreI with lit-
tle interaction with the protein. Aquaporins,
although also putative six transmembrane–
segment channel-like water transport pro-
teins, show substantial temperature depen-
dence (15). Our data suggest that UreI func-
tions as a specific, H1-activated urea chan-
nel. A channel mechanism would allow a rate
of urea uptake adequate for saturation of
internal urease at physiological gastric urea
concentrations (1 to 3 mM).

Western blot analysis detected the presence
of UreI in purified inner but not outer mem-
brane fractions (Fig. 3). Periodic acid–silver
staining detected carbohydrate (16) in the outer
but not inner membrane fraction (17), confirm-
ing the validity of the separation (18). UreI
contains six hydrophobic sequences, H1 to H6.
In vitro transcription/translation of various
NH2-terminal lengths of UreI, fused to a gly-
cosylatable COOH-terminal tag, was used to

Fig. 1. Confocal fluo-
rescent micrograph of
H. pylori stained using
the Live/Dead method
(Molecular Probes, Eu-
gene, Oregon). (A) Be-
fore C12E8 treatment.
Green color is from
staining with only SYTO
9, a permeant nucleic
acid dye. (B) After
0.01% C12E8 treatment.
Red stain shows the
disrupted membrane
that allows entry of propidium iodide.

Fig. 2. Comparison of the pH profiles of cyto-
plasmic urease activity in wild-type (WT) and
UreI– H. pylori ATCC 43504 with that of ureI–

lysate (n 5 3) (22). pHmedium, pH of the medi-
um. Error bars indicate 6 SEM.

Fig. 3. Western blot analysis showing the ab-
sence of UreI in the ureI mutants and its pres-
ence in the inner but not outer membrane of
wild-type H. pylori, as well as in oocytes inject-
ed with ureI cRNA. TM, total membranes; IM,
inner membrane; OM, outer membrane (23).
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follow orientation of translation products in
canine microsomal membranes (19). A signal
anchor sequence translocates the COOH-termi-
nus into the microsomal lumen (analogous to
the bacterial periplasm), and a subsequent stop
transfer sequence returns the COOH-terminus
to the cytoplasmic side. Alternating signal an-
chor and stop transfer sequences defined (Fig.
5A) the topography of UreI.

The lack of a cytoplasmic retention signal
in front of the first hydrophobic sequence,
H1, and the presence of two positively
charged amino acids in front of H2 imply a
periplasmic location of the NH2-terminus.
The COOH-terminus of the UreN1 construct,
encoding Met1–Lys23, was glycosylated, sig-
nifying COOH-terminal “out” orientation
(Fig. 5A). However, UreN1b, Met1–Lys27,
had a COOH-terminal “in” orientation be-

cause of the additional positive charge (20).
The product of UreN2, Met1–Thr56, showed
strong glycosylation indicating that H1 and
H2 are a membrane-inserted pair with the
NH2- and COOH-termini oriented “out.” The
translation product of UreN3, Met1–Arg102,
lost the glycosylation of UreN2. H3 acts as a
stop transfer sequence, yielding a COOH-
terminus “in” orientation. The glycosylation
of the product of UreN4 translation, Met1–
Leu128, showed that H4 acted as a signal
anchor, directing the COOH-terminus “out”.
The translation product of UreN5, Met1–
Lys162, showed no glycosylation, with H5
acting as a stop transfer sequence, whereas
the product of UreN6, Met1–Val195, was gly-
cosylated. H6 therefore behaved as a signal
anchor. Hence, the inner membrane protein,
UreI, has six transmembrane–inserted seg-

ments, with both NH2- and COOH-termini
located in the periplasm (Fig. 5B).

The apparent pK of UreI activation im-
plies protonation of one or more periplasmic
histidines for activation of urea transport.
Histidine 123, located at the boundary of H4,
was mutated to arginine or glycine (21). Ex-
pression of UreI was unaffected by this mu-
tation, but acid activation of urea uptake dis-
appeared (1.83 6 0.20 pmol per oocyte at pH
5.0 versus 1.75 6 0.34 pmol per oocyte at pH
7.5). The protonated state of this histidine is
important for acid activation of transport.

Acid survival of prokaryotes depends on
the maintenance of suitable levels of cyto-
plasmic and periplasmic pH to maintain their
PMF. Helicobacter pylori survives between
pH 4.0 and 8.5 in the absence of urea and
grows between pH 6.0 and 8.0 (2). A neutral

Fig. 4. Uptake experi-
ments in ureI-injected
and control Xenopus
oocytes (n 5 5 to 7).
(A) Equilibration of
50 mM 14C-urea at
pH 5.5 and 7.5. (B)
Uptake of 50 mM 14C-
urea in ureI-injected
oocytes as a function
of pH of the medium.
(C) Uptake of 50 mM
14C-urea or uptake of
50 mM 14C-thiourea
at pH 5.0 and 7.5 in
the presence of ex-
cess unlabeled urea.
(D) Effect of temper-
ature on uptake of
14C-urea at pH 5.0
between 15° and
30°C (24). Error bars
indicate 6 SEM.

Fig. 5. Topography of
UreI. (A) SDS–poly-
acrylamide gel electro-
phoresis analysis of
products resulting from
in vitro transcription/
translation of succes-
sive UreIN-ter/H1,K1-
ATPase b-subunit fu-
sion constructs con-
taining one to six of
the hydrophobic se-
quences of UreI, with (1) or without (–) microsomes. Glycosylation (arrow) is
detected by a 12.5-kD shift in the translation product. (B) Two-dimensional model
of UreI from in vitro translation results (25). Arrow, histidine 123.
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pH–optimum urease must be shielded from
gastric acidity and prevented from being active
at neutral pH to avoid lethal alkalinization (5).
Urea transport via UreI allows the internal ure-
ase of H. pylori to generate ammonia in an acid
environment, buffering the periplasm. This al-
lows the organism to survive and grow in the
stomach in the presence of usual gastric urea
concentrations. The absence of transport by
UreI at neutral pH prevents high urease activity
in the absence of gastric acidity, as occurs
during digestion. The combination of a high
level of a neutral pH–optimum urease and an
acid-regulated urea channel explains why H.
pylori is unique in its ability to inhabit the
human stomach. Effective inhibition of UreI
would provide a means of eradicating the or-
ganism in the normal, acid-secreting stomach.
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P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; and
Y, Tyr.
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Vesicular stomatitis is an economically important arboviral disease of livestock.
Viremia is absent in infected mammalian hosts, and the mechanism by which
insects become infected with the causative agents, vesicular stomatitis viruses,
remains unknown. Because infected and noninfected insects potentially feed on
the same host in nature, infected and noninfected black flies were allowed to
feed on the same host. Viremia was not detected in the host after infection by
a black fly bite, but because noninfected black flies acquired the virus while
co-feeding on the same host with infected black flies, it is concluded that a
viremic host is not necessary for an insect to be infected with the virus. Thus
co-feeding is a mechanism of infection for an insect-transmitted virus.

Vesicular stomatitis is an arthropod-borne viral
disease that primarily affects cattle, swine, and
horses; it causes vesicular lesions on the mouth,
coronary bands, and teats. Many species of
wildlife and humans are also at risk. The caus-
ative agents, vesicular stomatitis viruses
(VSVs), are a group of antigenically related but
distinct viruses of the genus Vesiculovirus, fam-
ily Rhabdoviridae (1).

Despite intensive study, aspects of the
epizootiology of VSVs, including modes of
transmission and endemic maintenance, remain
largely unknown and highly controversial. The
World Health Organization (WHO) definition
of an arbovirus (2) implies that only vertebrate
species that develop detectable viremia after
infection are significant in the epidemiology of
these viruses and stipulates that vector infection
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